Home
Class 12
MATHS
Prove that: cos e c(tan^(-1)("cos"(cot^(...

Prove that: `cos e c(tan^(-1)("cos"(cot^(-1)("sec"(sin^(-1)a)))))=sqrt(3-a^2),` where `a in [0,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cosec(tan^(-1)("cos"(cot^(-1)("sec"(sin^(-1)a)))))=sqrt(3-a^2), where a in [0,1]

Prove that: csc(tan^(-1)(cos(cot^(-1)(sec(sin^(-1)a)))))=sqrt(3-a^(2)) where a in[0,1]

cosec[tan^(-1)(cos(cot^(-1)(sec(sin^(-1)a))))] = ______

Prove that: sec(tan^-1 1)+cos e c(cot^(-1) 1)=4

Prove that sec^2(tan^(-1)2)+cos e c^2(cot^(-1)3)=15

Prove that cos (tan^(-1)(sin(cot^-1x))) =sqrt((x^2+1)/(x^2+2))

Prove that sec [cot^-1{sin(tan^-1 (cosec(cos^-1 a)))}] = sqrt(3-a^2), where |a| < 1

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((1+x^2)/(2+x^2) .