Home
Class 11
MATHS
" Prove that: "4(cos^(3)10+sin^(3)20)=3(...

" Prove that: "4(cos^(3)10+sin^(3)20)=3(cos10+sin20)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that 4(cos^3 10^@+sin^3 20^@)=3(cos10^@+sin20^@)

Prove that : (cos^(3) A + sin^(3) A)/ (cos A + sin A) + (cos^(3) A - sin^(3) A)/(cos A - sin A) = 2

Prove that, 4 (cos^(3) 10^(@) + sin^(3) 20 ^(@))=3 (cos 10^(@) + sin 20^(@))

Prove that 4(cos ^(3) 10^(@) + sin ^(3) 20^(@)) = 3 ( cos 10^(@) + sin 20^(@)).

Prove the following identity: 4(cos^(3)10^(0)+sin^(3)20^(@))=3(cos10^(0)+sin20^(@))

Prove the following 4(cos^(3)10^(@)+sin^(3)20^(@))=3(cos10^(@)+sin20^(@))

Prove that (cos20^(@)-sin20^(@))/(cos20^(@)+sin20^(@))=tan 25^(@)

Prove that :(cos20^(@)-sin20^(@))/(cos20^(@)+sin20^(@))=tan25^(@)

Prove that : (cos 20^0 - sin 20^0)/(cos 20^0 + sin 20^0) = tan 25^0

Prove that (cos10^(@)-sin10^(@))/(cos10^(@)+sin10^(@))=tan35^(@)