Home
Class 13
MATHS
L=lim(x rarr-7)([x]^(2)+15[x]+56)/(sin(x...

L=lim_(x rarr-7)([x]^(2)+15[x]+56)/(sin(x+7)sin(x+8))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr-7) ([x]^(2)+15[x]+56)/(sin(x+7)sin(x+8))= (where [.] denotes the greatest integer function)

lim_(xrarr-7) ([x]^(2)+15[x]+56)/(sin(x+7)sin(x+8))= (where [.] denotes the greatest integer function)

(lim)_(X-> (-7)([x]^2+15[x]+56)/("sin"(x+7)"sin"(x+8))= (where [.] denotes the greatest integer function) a. is 0 b. is 1 c. is -1 d. does not exist

(lim)_(xvec-7)([x]^2+15[x]+56)/("sin"(x+7)"sin"(x+8))= (where [.] denotes the greatest integer function) a. is 0 b. is 1 c. is -1 d. does not exist

underset( x rarr - 7)( "Lim")( [x]^(2) + 15[x]+ 56)/( sin (x + 7 ) sin ( x+ 8 )) ( where [**] denotes greatest integer function )

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)x^(2)sin(pi/x)=

lim_(x rarr0)(sin x)/(x^(2))

lim_(x rarr0)(sin^(2)x)/(x)=