Home
Class 12
MATHS
If Aa n dB are square matrices of the sa...

If `Aa n dB` are square matrices of the same order and `A` is non-singular, then for a positive integer `n ,(A^(-1)B A)^n` is equal to `A^(-n)B^n A^n` b. `A^n B^n A^(-n)` c. `A^(-1)B^n A^` d. `n(A^(-1)B^A)^`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are square matrices of the same order and A is non-singular, then for a positive integer n, (A^(-1)B A)^n is equal to

If A and B are square matrices of the same order and A is non-singular,then for a positive integer n,(A^(-1)BA)^(n) is equal to A^(-n)B^(n)A^(n) b.A^(n)B^(n)A^(-n) c.A^(-1)B^(n)A d.n(A^(-1)BA)

Let A;B;C be square matrices of the same order n. If A is a non singular matrix; then AB=AC then B=C

Let A; B; C be square matrices of the same order n. If A is a non singular matrix; then AB = AC then B = C

If A and B are square matrices of same order then (A^(-1)BA)^(n) = ………… , n inN .

If Aa n dB are two non-singular matrices of the same order such that B^r=I , for some positive integer r >1,t h e nA^(-1)B^(r-1)A=A^(-1)B^(-1)A=

A and B are square matrices and A is non-singular matrix, then (A^(-1) BA)^n,n in I' ,is equal to (A) A^-nB^nA^n (B) A^nB^nA^-n (C) A^-1B^nA (D) A^-nBA^n

A and B are square matrices and A is non-singular matrix, then (A^(-1) BA)^n,n in I' ,is equal to (A) A^-nB^nA^n (B) A^nB^nA^-n (C) A^-1B^nA (D) A^-nBA^n