Home
Class 11
MATHS
lim(x->0)((b^(t+1) - a^(t+1))/(b-a))^(1/...

`lim_(x->0)((b^(t+1) - a^(t+1))/(b-a))^(1/t)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose that a and b(b!=a) are real positive numbers, the value of lim_(t to0)((b^(t+1)-a^(t+1))/(b-a))^(1//t) has the is equal to

lim_(t rarr0)((1)/(t sqrt(1+t))-(1)/(t))

The value of (lim)_(x->0)1/(x^3)int_0^x(t ln(1+t))/(t^4+4)dt is a. 0 b. 1/(12) c. 1/(24) d. 1/(64)

The value of lim_(x to 0)(1)/(x^(3))(t " In"(1+t))/(t^(4)+4)dt is

Given that lim_(x to 0)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

If lim_(t rarr x)(e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 and f(0)=(1)/(2), then find the value of f'(0)*4(b)2(c)0(d)1

The value of lim_(x rarr0)int_(0)^(x)(t ln(1+t))/(t^(4)+4)dt

lim_(t rarr0)((2)/(t^(2))+(1)/(cos t-1))

Compute lim_(t to 1) (sqrtt-1)/(t-1)

lim_(t rarr1)(sqrt(t)-1)/(t^((1)/(3))-1)