Home
Class 12
MATHS
int(2^x)/(sqrt(1-4^x))dx=ksin^(- 1)2^x+c...

`int(2^x)/(sqrt(1-4^x))dx=ksin^(- 1)2^x+c`, then k =

Promotional Banner

Similar Questions

Explore conceptually related problems

STATEMENT-1 : If int(2^(x))/(sqrt(1-4^(x)))=ksin^(-1)(2^(x)) , then k equals (1)/(log2) . STATEMENT-2 : If intf(x)dx=-f(x)+c , then f(log_(e)2)=(1)/(2) STATEMENT-3 : int(e^(x))/(sqrt(1+e^(x)))dx=-2sqrt(1+e^(x))+c

STATEMENT-1 : If int(2^(x))/(sqrt(1-4^(x)))=ksin^(-1)(2^(x)) , then k equals (1)/(log2) . STATEMENT-2 : If intf(x)dx=-f(x)+c , then f(log_(e)2)=(1)/(2) STATEMENT-3 : int(e^(x))/(sqrt(1+e^(x)))dx=-2sqrt(1+e^(2))+c

If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

If int (2^x)/(sqrt(1-4^(x)))dx = k sin^(-1) (2^(x))+C , then k is equal to :

If int(2^(x))/(sqrt(1-4^(x)))dx=K Sin^(-1)(2^(x))+c , then K=

int (2x)/sqrt(1-x^2-x^4) dx=

int(2x)/(sqrt(1-x^(2)-x^(4)))dx=

int(2x)/(sqrt(1-x^(2)-x^(4)))dx