Home
Class 12
MATHS
Given that {:(A),(B):} = A^2 + B^2 + 2AB...

Given that `{:(A),(B):} = A^2 + B^2 + 2AB`, what is `A + B`, if `{:(A),(B):} = 9` ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If [ sqrt (a ^(2) + b^(2) + ab)] + [ sqrt (a^(2) + b^(2) - ab)] = 1 then what is the value of (1 - a^(2)) (1 - b^(2)) ?

If a + b = 9 and a^2 + b^2 = 53 , then find the value of ab

If a + b= 9 and ab = -22 , find : a^(2)- b^(2)

(cot (A + B)) / (2) * (tan (AB)) / (2) = (a) (a + b) / (ab) (b)

Verify the identity (a + b)^(2) -= a^(2) + 2ab + b^(2) geometrically by taking a = 5 units, b = 9 units

To find the square of the algebraic expressions given below using (a+b)^2 = a^2 + 2ab + b^2 , Let's find what has to be substituted for a and b in each case and hence find their square. p + 9

8a ^ (2) -27ab + 9b ^ (2)

If A and B are two matrices such that AB=B and BA=A then A^2+B^2= (A) 2AB (B) 2BA (C) A+B (D) AB