Home
Class 11
MATHS
[" If "f(x)=x^(2)-(1)/(x^(2))," then pro...

[" If "f(x)=x^(2)-(1)/(x^(2))," then prove that "],[f(x)+f((1)/(x))=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

(i) If f(x) = x + (1)/(x) prove that: [f(x)]^(3) = f(x^(3)) + 3f ((1)/(x)) (ii) If f(x) = x^(3) - (1)/(x^(3)) , prove that f(x) + f((1)/(x)) = 0 (iii) If f(x) = (1-x^(2))/(1+ x^(2)) , prove that f (tan theta) = cos 2 theta

If f(x)=(x^(2)-1)/(x^(2)+1) prove that f((1)/(x))=-f(x)

If f(x)=(1-x)/(1+x) , then prove that f(x)+f(1/x)=0 .

If f(x)=(x^(2))/(1+x^(2)), prove that lim_(x rarr oo)f(x)=1

If 2f(x-1)-f((1-x)/x)=x , then prove that 3f(x)=2(x+1)+1/(x+1) .

If f(x)=2x^(2)+3x-5 , then prove that f'(0)+3f'(-1)=0

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^(2))]=2f(x)

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot