Home
Class 12
MATHS
In the interval (pi//2,pi)...

In the interval `(pi//2,pi)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the least positive value of x , satisfying tanx=x+1, lies in the interval (pi/4,pi/2)

Prove that the least positive value of x , satisfying tanx=x+1, lies in the interval (pi/4,pi/2)

Prove that the least positive value of x , satisfying tanx=x+1, lies in the interval (pi/4,pi/2)

Find the value of "tan"^(-1) (-1) in the interval (pi/(2),(3pi)/(2)) .

Verify Lagrange's mean value theorem for the following functions f(x) = sin x in the interval [pi/2, (5pi)/2]

On the interval (pi/4,pi/2) , the function tan^-1 (sinx + cos x) is

Show that f(x)=tan^(-1)(sinx+cosx) is decreasing function on the interval (pi/4,pi/2)dot

If y=tan^(-1)x+tan^(-1)(1/x)+sec^(-1)x , then y lies in the interval (a) [pi/2,pi)uu[pi,(3pi)/2) (b) [pi/2,(3pi)/2] (c)(0,pi) (d) [0,pi/2)uu[pi/2,pi)

which of the following statement is // are true ? (i) f(x) =sin x is increasing in interval [(-pi)/(2),(pi)/(2)] (ii) f(x) = sin x is increasing at all point of the interval [(-pi)/(2),(pi)/(2)] (3) f(x) = sin x is increasing in interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (4) f(x)=sin x is increasing at all point of the interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (5) f(x) = sin x is increasing in intervals [(-pi)/(2),(pi)/(2)]& [(3pi)/(2),(5pi)/(2)]

which of the following statement is // are true ? (i) f(x) =sin x is increasing in interval [(-pi)/(2),(pi)/(2)] (ii) f(x) = sin x is increasing at all point of the interval [(-pi)/(2),(pi)/(2)] (3) f(x) = sin x is increasing in interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (4) f(x)=sin x is increasing at all point of the interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (5) f(x) = sin x is increasing in intervals [(-pi)/(2),(pi)/(2)]& [(3pi)/(2),(5pi)/(2)]