Home
Class 11
MATHS
If P(n):1^(3)+2^(3)+3^(3)+....+(n+1)^(3)...

If `P(n):1^(3)+2^(3)+3^(3)+....+(n+1)^(3)=k` ,then L.H.S.of P(2)=

Promotional Banner

Similar Questions

Explore conceptually related problems

2.^(n)P_(3)=^(n+1)P_(3)

If P(n,5):P(n,3)=2:1 find n

if ^(n)P_(5):^(n)P_(3)=2:1, then n

lim_ (n rarr oo) (1 ^ (p) + 2 ^ (p) + 3 ^ (p) + ......... + n ^ (p)) / (n ^ (p + 1) )

lim_(nrarroo) ((1^(k)+2^(k)+3^(k)+"......"n^(k)))/((1^(2)+2^(2)+"....."+n^(2))(1^(3)+2^(3)+"....."+n^(3))) = F(k) , then (k in N)

Let P_ (n) = (2 ^ (3) -1) / (2 ^ (3) +1) * (3 ^ (3) -1) / (3 ^ (3) +1) * (4 ^ ( 3) -1) / (4 ^ (3) +1) ...... (n ^ (3) -1) / (n ^ (3) +1) Prove that lim_ (n rarr oo) P_ ( n) = (2) / (3)

If the value of the sum n^(2) + n - sum_(k = 1)^(n) (2k^(3)+ 8k^(2) + 6k - 1)/(k^(2) + 4k + 3) as n tends to infinity can be expressed in the form (p)/(q) find the least value of (p + q) where p, q in N