Home
Class 12
MATHS
Show that: sin A + sin B +sin C - sin(A...

Show that: ` sin A + sin B +sin C - sin(A+B+C)=4 sin ((A+B)/2)sin ((B+C)/2)sin ((C+A)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin A + sin B-sin C = 4sin ((A) / (2)) sin ((B) / (2)) cos ((C) / (2))

Show that: sin A sin(B-C)+sin B sin(C-A)+sin C sin(A-B)=0

(sin2A + sin2B + sin2C) / (sin A + sin B + sin C) = 8sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))

If A+B+C=pi , prove that : (sin 2A+sin 2B + sin 2C)/(sinA+sinB+sinC) = 8 sin(A/2) sin(B/2) sin(C/2)

cos A + cos B + cos C = 1 + 4sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))

sin (B + CA) + sin (C + AC) + sin (A + BC) = 4sin A sin B sin C

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

sin A + sin B + sin C = 4cos ((A) / (2)) cos ((B) / (2)) cos ((C) / (2))

sin (B + 2C) + sin (C + 2A) + sin (A + 2B) = 4sin ((BC) / (2) sin ((CA) / (2)) sin ((AB) / (2)