Home
Class 12
MATHS
If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] a...

If `A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1)` exist and not equal to 0, then `(A^(2)-4A)A^(-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,4,4),(4,1,4),(4,4,1)] and A^(-1) exists and not equal to zero, then (A^(2)-8A)A^(-1) =

If A=[(1,4,4),(4,1,4),(4,4,1)] and A^(-1) exists and not equal to zero ,then (A^(2)-8A)A^(-1) =

If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A is equal to

If A =[[1,2,2],[2,1,2],[2,2,1]] then prove that A^2-4A-5I=0 .

If A={:[(1,0,-2),(-2,-1,2),(3,4,1)]:} then A^(-1) =

A=[{:(1,2,2),(2,1,2),(2,2,1):}] , then A^(3) - 4A^(2) -6A is equal to

If A = [(-2,2,1),(0,4,5),(-2,6,6)] does A^(-1) exist?

If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equal to

If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equal to