Home
Class 11
MATHS
log2(x^2-4x+5)=(x-2)...

`log_2(x^2-4x+5)=(x-2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the equation log2(x^(2)-4x+5)=(x-2) are

The roots of the equation log_2 (x^2 - 4 x + 5) = (x - 2) are

Solve the equation,log_(x^(2)+4x+5){log_(3x^(2)+4x+5)(x^(2)-3x)}=0

log_(x^(2))((4x-5)/(|x-2|))>=-(1)/(2)

If (log_2(4x^2-x-1))/(log_2(x^2+1))gt1 , then x lies in the interval

Column I: Function, Column II: Period f(x)=(log)_3(5_(4x)-x^2) , p. Function not defined f(x)=(log)_3(x^2-4x-5) , q. [0,oo] f(x)=(log)_3(x^2-4x+5) , r. (-oo,2] f(x)=(log)_3(4x-5-x^2) , s. R

If log_(x)(4x^(log_(5)(x))+5)=2log_(5)x, then x equals to

The equation x^(3/4(log_(2)x)^(2)+log_(2)x-5/4)=sqrt(2) has

Solve for x :: x^(3/4(log_2(x))-(5/4))=sqrt(2) .