Home
Class 11
MATHS
IF x=198! then value of the expression 1...

IF `x=198!` then value of the expression `1/(log_2x)+1/(log_3x)+...+1/(log_198 x)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=prod_(n=1)^(2000)n , then the value of the expression, 1/(1/((log)_2x)+1/((log)_3x)++1/((log)_(2000)x))i s dot

If x=prod_(n=1)^(2000)n, then the value of the expression, (1)/((1)/(log_(2)x)+(1)/(log_(3)x)+.........+(1)/(log_(2000)x))is..........

If x=prod_(n=1)^(2000)n, then the value of expression,((1)/((log_(2)x))+((1)/(log_(3)x))+...............+((1)/(log_(2000)x)) (A) 2(B)3(C)1((1)/(log_(3)x))+............+((1)/(log_(2000)x))

If x_(n)gt1 for all n in N , then the minimum value of the expression log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(n))x_(n-1)+log_(x_(1))x_(n) is

If x_(n)gt1 for all n in N , then the minimum value of the expression log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(n))x_(n-1)+log_(x_(1))x_(n) is

The least value of expression 2 log_(10)x - log_(x) (1//100) for x gt 1 is:

The value of int x log x (log x - 1) dx is equal to

The value of int x log x (log x - 1) dx is equal to

The value of int x log x (log x - 1) dx is equal to