Home
Class 12
MATHS
প্রমাণ করো, sincos^-1tansec^-1x=sqrt(2-x...

প্রমাণ করো, `sincos^-1tansec^-1x=sqrt(2-x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of solutions of equation sin(cos^(-1)(tansec^(-1)x))=sqrt(1+) is/are

IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q u a l s 1/2((sqrt(x^2-1))/(x^3)+tan^(-1)sqrt(x^2-1))+C , 1/2((sqrt(x^2-1))/(x^2)+xtan^(-1)sqrt(x^2-1))+C , 1/2((sqrt(x^2-1))/x+tan^(-1)sqrt(x^2-1))+C , 1/2((sqrt(x^2-1))/(x^2)+tan^(-1)sqrt(x^2-1))+C

Find the value of: sincos^-1(frac{sqrt3}{-2})

IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q u a l s a. 1/2((sqrt(x^2-1))/(x^3)+tan^(-1)sqrt(x^2-1))+C b. 1/2((sqrt(x^2-1))/(x^2)+xtan^(-1)sqrt(x^2-1))+C c. 1/2((sqrt(x^2-1))/x+tan^(-1)sqrt(x^2-1))+C d. 1/2((sqrt(x^2-1))/(x^2)+tan^(-1)sqrt(x^2-1))+C

IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q u a l s a. 1/2((sqrt(x^2-1))/(x^3)+tan^(-1)sqrt(x^2-1))+C b. 1/2((sqrt(x^2-1))/(x^2)+xtan^(-1)sqrt(x^2-1))+C c. 1/2((sqrt(x^2-1))/x+tan^(-1)sqrt(x^2-1))+C d. 1/2((sqrt(x^2-1))/(x^2)+tan^(-1)sqrt(x^2-1))+C

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to sin^(-1)(2x sqrt(1-x^(2))), if -(1)/(sqrt(2))

The value of tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=theta, |x|<1/2,x!=0 , is equal to:

The value of cos [ tan^-1 {sin (cot^-1 (x))}] is a) sqrt((x^2+1)/(x^2-1)) b) sqrt((1-x^2)/(x^2+2)) c) sqrt((1-x^2)/(1+x^2)) d) sqrt((x^2+1)/(x^2+2))