Home
Class 11
MATHS
Vertices of a triangle are (3,4), (5 cos...

Vertices of a triangle are `(3,4), (5 costheta, 5 sintheta) and (-5 sintheta, 5 costheta)`. Then locus of orthocentre of thetriangle is -

Promotional Banner

Similar Questions

Explore conceptually related problems

Vertices of a triangle are (3,4),(5cos theta,5sin theta) and (-5sin theta,5cos theta). Then locus of orthocentre of thetriangle is -

Vertices of a variable triangle are (3,4); (5costheta, 5sintheta) and (5sintheta,-5costheta) where theta is a parameter then the locus of its orthocentre is a. (x+y-1)^2+(x-y-7)^2=100 b. (x+y-7)^2+(x-y-1)^2=100 c. (x+y-7)^2+(x+y-1)^2=100 d. (x+y-7)^2+(x-y+1)^2=100

Vertices of a variable triangle are A (3,4),B(5costheta, 5sintheta) and C (5sintheta,-5costheta) where theta is a parameter then, find the locus of its orthocentre.

If A=[[costheta, sintheta], [-sintheta, costheta]] , then

If A = ((costheta,-sintheta),(sintheta,costheta)) then

(costheta + isintheta)^4/(sintheta + icostheta)^5 is equal to.

(costheta + isintheta)^4/(sintheta + icostheta)^5 is equal to.

(costheta + isintheta)^4/(sintheta + icostheta)^5 is equal to.

If 3sintheta+5costheta=3 , then 5sintheta-3costheta=?