Home
Class 12
MATHS
The three vectors hat i+hat j,hat j+hat ...

The three vectors `hat i+hat j,hat j+hat k, hat k+hat i` taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume: (A) 1/3 (B) 4 (C) `3sqrt3/4` (D) `4/3sqrt3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The three vectors hat i+hat j,hat j+hat k,hat k+hat i taken two at a time from three planes.The three unit vectors drawn perpendicular to these three planes form a parallelepiped of vector: (1)/(3) (b) 4 (c) (3sqrt(3))/(4) (d) (4)/(3sqrt(3))

If the vectors 2 hat i-3 hat j , hat i+ hat j- hat ka n d3 hat i- hat k form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.

If the vectors 2 hat i-3 hat j , hat i+ hat j- hat ka n d3 hat i- hat k form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.

If the vectors 2 hat i-3 hat j , hat i+ hat j- hat ka n d3 hat i- hat k form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.

If the vectors 2 hat i-3 hat j , hat i+ hat j- hat ka n d3 hat i- hat k form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.

If the vectors 2 hat i-3 hat j , hat i+ hat j- hat ka n d3 hat i- hat k form three concurrent edges of a parallelepiped, then find the volume of the parallelepiped.

Prove that the vectors 2 hat i- hat j+ hat k , hat i- 3 hat j- 5 hat k and 3 hat i- 4 hat j- 4 hat k are coplanar.

If the vectors 2hat i-3hat j,hat i+hat j-widehat k and 3hat i-hat k form three concurrent edges of a parallelepiped,then find the volume of the parallelepiped.

A unit vector parallel to xy -plane and perpendicular to the vector 4hat i-3hat j+hat k is