Home
Class 11
MATHS
If t is a parameter, then x=a(t+(1)/(t))...

If `t` is a parameter, then `x=a(t+(1)/(t))`, `y=b(t-(1)/(t))` represents

Promotional Banner

Similar Questions

Explore conceptually related problems

IF t is a parameter, then x = a(t + (1)/(t)) and y = b(t - (1)/(t)) represents

IF t is a parameter, then x = a(t + (1)/(t)) and y = b(t - (1)/(t)) represents

IF t is a parameter, then x = a(t + (1)/(t)) and y = b(t - (1)/(t)) represents

x = t + (1)/(t), y = t - 1/t

If t is a variable parameter, show that x=(a)/(2)(t+(1)/(t)) and y = (b)/(2)(t-(1)/(t)) represent a hyperbola.

If x=a(t-(1)/(t)) , y=a(t+(1)/(t)) then (dy)/(dx) =

If x=(t+(1)/(t)),y=(t-(1)/(t)) , then (dy)/(dx)=?

Which of the following equations in parametric form can represent a hyperbolic profile, where t is a parameter: (A)x=(a)/(2)(t+(1)/(t))&y=(b)/(2)(t-(1)/(t))(B)t(x)/(a)-(y)/(b)+t=0&(x)/(a)+t(y)/(b)-1=0(C)x=e^(t)+e^(-t)&y=e^(t)-e^(-t)(D)x^(2)-6=2cos t&y^(2)+2=4cos^((t)/(2))