Home
Class 14
MATHS
sec^4x-sec^2x=3 then find tan^4x+tan^2x...

`sec^4x-sec^2x=3` then find `tan^4x+tan^2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If secx+sec^2x=1 then the value of tan^8x-tan^4x-2tan^2x+1 will be equal to

If secx+sec^2x=1 then the value of tan^8x-tan^4x-2tan^2x+1 will be equal to 0 (b) 1 (c) 2 (d) 3

If secx+sec^2x=1 then the value of tan^8x-tan^4x-2tan^2x+1 will be equal to 0 (b) 1 (c) 2 (d) 3

int tan^(4)x sec^(2)xdx

int sec^(4)x tan^2 xdx

If sec x+sec^(2)x=1 then the value of tan^(8)x-tan^(4)x-2tan^(2)x+1 will be equal to 0(b)1(c)2(d)3

If |[sec^2x, tanx, tan^2x] , [tan^2x, sec^2x, tanx] , [tanx, tan^2x, sec^2x]| is expanded in the power of tanx then the constant is

If sec x + sec^(2) x = 1 then the value of tan^(8) x - tan^(4) x - 2 tan^(2) x +1 will be equal to 0

If sin(x+4)^(@)sec(x-4)^(@)=1 then find tan((2x)/(3))=?

Prove that : 2sec^(2)x-sec^(4)x-2cos ec^(2)x+cos ec^(4)x=(1-tan^(8)x)/(tan^(4)x)