Home
Class 11
MATHS
यदि z और omega दो अशून्य सम्मिश्र संख्या...

यदि z और `omega` दो अशून्य सम्मिश्र संख्याएँ इस प्रकार हो कि `|zomega|=1` और `arg(z)-arg(omega)=(pi)/(2)`, तब `barzomega` बराबर है:

Promotional Banner

Similar Questions

Explore conceptually related problems

If z and omega are two non-zero complex numbers such that |z omega|=1" and "arg(z)-arg(omega)=(pi)/(2) , then bar(z)omega is equal to

If z and omega are two non-zero complex numbers such that |zomega|=1 and arg(z)-arg(omega)=pi/2 , then barzomega is equal to

If z and omega are two non-zero complex numbers such that |zomega| =1 and arg (z) - arg (omega) = (pi)/(2) then barz omega is equal to

abs(z*omega)=1 ,arg(z)-arg(omega)=(3pi)/2 . Find the arg[(1-2barzomega)/(1+3barzomega)]

[" 1.If "z" and "omega" are two non-zero complex numbers such that "],[|z omega|=1" and "Arg(z)-Arg(omega)=(pi)/(2)," then "bar(z)omega" is equal to "]

If Z and omega are two complex numbers such that |zomega|=1andarg(z)-arg(omega)=(3pi)/(2) , then arg ((1-2bar(z)omega)/(1+3bar(z)omega)) is : (Here arg(z) denotes the principal argument of complex number z)

If |z_1| = |z_2| and "arg" (z_1) + "arg" (z_2) = pi//2, , then