Home
Class 11
MATHS
The following statement : ( p rarr q )...

The following statement `:`
`( p rarr q ) rarr [ ( p rarr q ) rarr q ]` is `:`

A

equivalent to `~ p rarr ~ q`

B

equivalent to `p rarr ~ q `

C

a fallacy

D

a tantalogy

Text Solution

AI Generated Solution

The correct Answer is:
To determine the logical validity of the statement \(( p \rightarrow q ) \rightarrow [ ( p \rightarrow q ) \rightarrow q ]\), we will construct a truth table and analyze the results step by step. ### Step 1: Define the Variables Let: - \( p \) and \( q \) be the two logical variables. ### Step 2: Construct the Truth Table We will create a truth table for \( p \) and \( q \) to evaluate the expression. | \( p \) | \( q \) | \( p \rightarrow q \) | \( (p \rightarrow q) \rightarrow q \) | \( (p \rightarrow q) \rightarrow [(p \rightarrow q) \rightarrow q] \) | |---------|---------|-----------------------|---------------------------------------|---------------------------------------------------------------------| | T | T | T | T | T | | T | F | F | T | T | | F | T | T | T | T | | F | F | T | F | F | ### Step 3: Evaluate Each Column 1. **Column for \( p \rightarrow q \)**: - If \( p \) is true and \( q \) is true, \( p \rightarrow q \) is true. - If \( p \) is true and \( q \) is false, \( p \rightarrow q \) is false. - If \( p \) is false, \( p \rightarrow q \) is true regardless of \( q \). 2. **Column for \( (p \rightarrow q) \rightarrow q \)**: - If \( p \rightarrow q \) is true and \( q \) is true, this is true. - If \( p \rightarrow q \) is false, this is true (since false implies anything). - If \( p \rightarrow q \) is true and \( q \) is false, this is false. 3. **Final Column for \( (p \rightarrow q) \rightarrow [(p \rightarrow q) \rightarrow q] \)**: - If \( (p \rightarrow q) \) is true and \( [(p \rightarrow q) \rightarrow q] \) is true, this is true. - If \( (p \rightarrow q) \) is false, this is true. - If \( (p \rightarrow q) \) is true and \( [(p \rightarrow q) \rightarrow q] \) is false, this is false. ### Step 4: Analyze the Final Column From the truth table, we see that the final column has the values: - T, T, T, F This means that the statement \(( p \rightarrow q ) \rightarrow [ ( p \rightarrow q ) \rightarrow q ]\) is not a tautology since it evaluates to false in one case. ### Conclusion The statement is not a tautology.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHAPTER TEST 14|12 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|17 Videos
  • MATHEMATICAL INDUCTION

    MODERN PUBLICATION|Exercise CHAPTER TEST 4|12 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos

Similar Questions

Explore conceptually related problems

The following statement (p rarr q)rarr[(sim p rarr q)rarr q] is: equivalent to p rarr-q(2) a fallacy a tautoloyy (4) equivalent to -p rarr q

The statement (p rarr q)vv(q rarr p) is

The statement (p rarr q ) rarr p is equivalent to

Statement (p ^^ q) rarr p is

Answer the following questions Examine whether the statement pattern [p rarr (~q vv r)] harr ~[p rarr (q rarr r)] is a tautology, contradiction or contingency.