Home
Class 11
MATHS
The Boollean expression : ((p ^^ q) vv...

The Boollean expression `:`
`((p ^^ q) vv ( p vv ~ q ) ) ^^ ( ~ p ^^ ~ q )` is equivalent to `:`

A

`p ^^ q`

B

`( ~ p ) ^^ ( ~q)`

C

`p ^^ ( ~ q )`

D

`p vv ( ~ q )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the Boolean expression \(((p \land q) \lor (p \lor \neg q)) \land (\neg p \land \neg q)\) and determine its equivalence, we can use a truth table approach. Here are the steps: ### Step 1: Define the Variables We have two variables, \(p\) and \(q\). We will evaluate the expression for all possible combinations of truth values for \(p\) and \(q\). ### Step 2: Create the Truth Table We will create a truth table with columns for \(p\), \(q\), \(\neg p\), \(\neg q\), \(p \land q\), \(p \lor \neg q\), and the final expression. | \(p\) | \(q\) | \(\neg p\) | \(\neg q\) | \(p \land q\) | \(p \lor \neg q\) | \((p \land q) \lor (p \lor \neg q)\) | \(\neg p \land \neg q\) | Final Expression | |-------|-------|------------|------------|----------------|--------------------|---------------------------------------|-------------------------|------------------| | T | T | F | F | T | T | T | F | F | | T | F | F | T | F | T | T | F | F | | F | T | T | F | F | T | T | F | F | | F | F | T | T | F | T | T | T | T | ### Step 3: Evaluate Each Column 1. **Negations**: - \(\neg p\) is the opposite of \(p\). - \(\neg q\) is the opposite of \(q\). 2. **AND Operation**: - \(p \land q\) is true only when both \(p\) and \(q\) are true. 3. **OR Operation**: - \(p \lor \neg q\) is true if either \(p\) is true or \(\neg q\) is true. 4. **Combining Results**: - The expression \((p \land q) \lor (p \lor \neg q)\) is true if either \(p \land q\) or \(p \lor \neg q\) is true. 5. **Final Expression**: - The final expression combines the results of \((p \land q) \lor (p \lor \neg q)\) with \(\neg p \land \neg q\) using AND. ### Step 4: Analyze the Final Column From the truth table, we see that the final expression is true only when both \(p\) and \(q\) are false. This means the expression is equivalent to \(\neg p \land \neg q\). ### Conclusion The Boolean expression \(((p \land q) \lor (p \lor \neg q)) \land (\neg p \land \neg q)\) is equivalent to \(\neg p \land \neg q\). ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHAPTER TEST 14|12 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|17 Videos
  • MATHEMATICAL INDUCTION

    MODERN PUBLICATION|Exercise CHAPTER TEST 4|12 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos

Similar Questions

Explore conceptually related problems

(p ^^ q) vv ~ p is equivalent to

The Bolean Expression ( p ^^ ~ q) vv q vv ( ~ p ^^ q vv ( ~ p ^^ q) is equivalent to

(p ^^ ~q) ^^ (~p vv q) is

~ ( p vv q) vv ( ~ p ^^ q) is logically equivalent to

~(pvvq)vv(~p^^q) is equivalent to

~(p vv q)vv (~p ^^ q) is logically equivalent to

(p ^^ q) vv (~q ^^ p) -=

The Boolean Expression (p ^^ ~q) vv q vv (~p ^^ q) is equivalent to: