Home
Class 12
MATHS
lim(x to 1-) (sqrtpi-sqrt(2 sin^(-1) x)...

`lim_(x to 1-) (sqrtpi-sqrt(2 sin^(-1) x))/sqrt(1-x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

The value of lim_(xrarr1)(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is equal to

The value of lim_(xrarr1^(-))(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is equal to

lim_(xrarr1^(-)) (sqrtpi-sqrt(2sin^-1x))/sqrt(1-x)= (A) sqrt(2/pi) (B) sqrt(pi/2) (C) 1/pi (D) sqrt(1/pi)

lim_(x rarr(-1)^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(x+1)) is equal to

lim_(x rarr1^(-))(sqrt(pi)-sqrt(2sin^(-1)x))/(sqrt(1-x))=(A)sqrt((2)/(pi))(B)sqrt((pi)/(2))(C)(1)/(pi)(D)sqrt((1)/(pi))