Home
Class 12
MATHS
Prove that [(a^(2) + b^(2))/(a + b)]^(...

Prove that
`[(a^(2) + b^(2))/(a + b)]^(a + b) gt a^(a) b^(b) gt {(a + b)/(2)}^(a + b)`, where a,b `gt` 0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (a^2+b^2)/2gt((a+b)/2)(aneb) .

Prove that b^(2)c^(2) + c^(2)a^(2) + a^(2) b^(2) gt abc (a+b+c)

Prove that b^2c^2+c^2a^2+a^2b^2gtabc(a+b+c) , where a,b,c gt 0 .

Prove that b^2c^2+c^2a^2+a^2b^2gtabc(a+b+c) , where a,b,c gt 0 .

If a + b = 1, a gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

Square root of 2a - sqrt(3a^2 - 2ab - b^2) , (a gt b gt 0) is

Prove that if a,b,c gt 0 then a^2(b+c)+b^2(c+a)+c^2(a+b) geq 6abc

If a lt 0 and b lt 0 , then (a +b)^(2) gt 0 .

If a gt 0 and b^(2) - 4 ac = 0 then solve ax^(3) + (a + b) x^(2) + (b + c) x + c gt 0 .

If a gt 0 and b^(2) - 4 ac = 0 then solve ax^(3) + (a + b) x^(2) + (b + c) x + c gt 0 .