Home
Class 12
MATHS
Consider the integrals A = int(0)^(pi)...

Consider the integrals
`A = int_(0)^(pi) (sinxdx)/(sinx + cos x)` and `B = int_(0)^(pi) (sinxdx)/(sinx - cos x)`
Which one of the following is correct ?

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the integrals A = int_(0)^(pi) (sinxdx)/(sinx + cos x) and B = int_(0)^(pi) (sinxdx)/(sinx - cos x) What is the value of B ?

int (2sinxdx)/(sinx +cosx) =

int_(0)^(pi//2) (sinx )/(sin x + cos x ) dx=

If A=int_(0)^(pi)(sinx)/(sinx+cosx)dx and B=int_(0)^(pi)(sinx)/(sinx-cosx)dx , then

int_(0)^(pi)e^(x)sinxdx=

int_(pi/5)^(3pi/10) (sinxdx)/(sinx+cosx)

int_0^(pi/2) x^2sinxdx

If A=int_(0)^(pi)(sinx)/(sinx+cosx)dx, B=int_(0)^(pi)(sinx)/(sinx-cosx)dx , then

int_0^(pi//2)(sinx-cos x)/(1+sinx cos x) dx

int_(0)^(pi//4)x^(2)sinxdx