Home
Class 11
MATHS
Prove that: (cosA-cosB)^(2)+(sinA-sinB...

Prove that:
`(cosA-cosB)^(2)+(sinA-sinB)^(2)=4sin^(2)(A-B)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (cosA+cosB)^(2)+(sinA+sinB)^(2)=4cos^(2)(A-B)/2

Prove that: (cosA+cosB)^(2)+(sinA+sinB)^(2)=4cos^(2)(A-B)/2

Prove that (cosA-cosB)^2+(sin A-sin B)^2=4sin^2((A-B)/2)

Prove that (cosA-cosB)^2+(sin A-sin B)^2=4sin^2((A-B)/2)

Prove that (cosA-cosB)^2+(sin A-sin B)^2=4sin^2((A-B)/2)

Prove that: (cosA+cosB)^2+(sinA-sinB)^2=4cos^2((A+B)/2) .

Prove that ((cosA+cosB)/(sinA-sinB))^n+((sinA+sinB)/(cosA-cosB))^n=2cot^n((A-B)/2) or according as n is even or oddrespectively..

(cosA+cosB)^2+(sinA-sinB)^2 is equal to

If none of the denominators is zero, prove that. ((cosA+cosB)/(sinA-sinB))^(n)+((sinA-sinB)/(cosA+cosB))^(n) = {(2cot^(n)((A-B)/(2)), if n "is even"),(0, if n "is odd"):} .

Prove that: ((cosA+cos B)/(sinA-sinB))^n+((sinA+sinB)/(cosA-cosB))^n={2cot^n((A-B)/2) ,if n is even, 0 if n is odd,