Home
Class 12
MATHS
If g, h, k denotes the side of a pedal t...

If g, h, k denotes the side of a pedal triangle, then prove that
`(g)/(a^(2))+ (h)/(b^(2))+ (k)/(c^(2))=(a^(2)+b^(2) +c^(2))/(2 abc)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If g,h,k denote the side of a pedal triangle,then (g)/(a^(2))+(h)/( b^(2))+(k)/( c^(2))=( a^(2)+ b^(2)+ c^(2))/(lambda abc) then lambda =?

If l, m, n denote the side of a pedal triangle, then (l)/(a ^(2))+(m)/(b^(2))+(n)/(c ^(2)) is equal to

For any triangle ABC, prove that (cos A)/(a)+(cos B)/(b)+(cos C)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In Delta ABC , prove that (b - c)^(2) cos^(2) ((A)/(2)) + (b + c)^(2) sin^(2) ((A)/(2)) = a^(2) .

In any Delta ABC, prove that :(b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

In Delta ABC prove that 2(b cos^(2)((C)/(2))-c cos^(2)((B)/(2)))=a+b+c

If a, b, c are the sides of Delta ABC such that 3^(2a^(2))-2*3^(a^(2)+b^(2)+c^(2))+3^(2b^(2)+2c^(2))=0 , then Triangle ABC is

If k be the perimeter of the triangle ABC, then b cos^(2)((C)/(2))+ccos^(2)((B)/(2)) is equal to