Home
Class 11
MATHS
A cylindrical tank of radius 20 cm and h...

A cylindrical tank of radius `20 cm` and height `50 cm` has water up to `30 cm` of height. What will be the rise in level of liquid at the periphery if the cylinder be given an angular velocity of `10 rad s^(-1)`? Also determine the frequency of rotation when water just starts spilling over the sides of the vessel.

Promotional Banner

Similar Questions

Explore conceptually related problems

A cylinderical tank of radiuus 20 cm and height 50 cm has water up to 30 cm of height. What will be the rise in level of liquid at the periphery if the cylinder be givenan angular velocity of 10 rad s^(-1) ? Also determine the frequency of rotation when water just starts spilling over the sides of the vessel.

A conical vessel with radius 10 cm and height 15 cm is completely filled with water. This water is poured into a cylinder with radius 5 cm. Find the height of water in the cylinder.

A cylindrical vessel of radius 8 cm contains water. A solid sphere of radius 6 cm is lowered into the water until it is completely immersed. What is the rise in the water level in the vessel?

A cylinder of radius R = 1 m and height H = 3 m two- thirds filled with water, is rotated about its vertical axis as shown in Fig. Determine the speed of rotation when a. the: water just starts spilling over the rim. b. the point at the centre of the base is just exposed.

A conical vessel whose internal radius is 12 cm and height 50 cm is full of liquid. The contents are with radius (internal) 10cm. The height to which the liquid rises in the cylindrical vessel is :

A cylindrical tank has a radius of 154 cm. It is filled with water to a height of 3 m. If water to a height of 4.5 m is poured into it, what will be the increase in the volume of water in kl?

A cylindrical jar of radius 10 cm is filled with water upto a height of 15cm. 14 sphercal balls of radius 3 cm each are immersed in the jar. Find the new level to which water is filled in the jar.

A cylindrical vessel of height 10cm has base radius 60cm. If d is the diameter of a spherical vessel of equal volume, then what is d equal to

A conical vessel whose internal radius is 10 cm and height 72 cm is full of water . If this water is poured into a cylindrical vessel with internal radius 30 cm, the height of the water level rises in it is :