Home
Class 11
MATHS
int(0)^(1) sin^(-1) x dx =(pi)/(2) -1...

`int_(0)^(1) sin^(-1) x dx =(pi)/(2) -1`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)((sin^(-1)x)/(x))dx=(pi)/(2)(log2)

int_0^1 sin^-1x dx=pi/2-1

int_(0)^(pi/2) sin^(-1)(sin x)dx

show that (a) int_(0) ^(2pi) sin ^(3) x dx = 0 , (b) int_(-1)^(1) e^(-x^(2)) dx = 2 int_(0)^(1) e^(-x^(2)) dx

int_(0)^(1)log sin((pi)/(2)x)dx equals

(i) Show that int_(0)^(pi)xf(sinx)dx =(pi)/(2)int_(0)^(pi)f (sin x)dx. (ii) Find the value of int_(-1)^(3//2)|x sin pix|dx .

int_(0)^(pi) dx/(1-sin x)=

int_(0)^(pi)(x sin x)/(1-sin x)dx=

Evaluate int_(0)^(1)log(sin((pi x)/(2)))dx

int_(-1)^(1)((sin^(-1)x)^(2)dx)/(1+pi^(sin x))is