Home
Class 11
MATHS
If |u|lt=1 |v|lt=1 and z=(u-v)/(1-ubarv)...

If `|u|lt=1` `|v|lt=1` and `z=(u-v)/(1-ubarv)` then least value of `|z|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |u|=|v|=1uv!=-1 and z=(u-v)/(1+uv) then (a) |z|=1( b) Re(z)=0 (c) Im(z)=0 (d) Re(z)=Im(z)

If |z_1-1|lt=1,|z_2-2|lt=2,|z_(3)-3|lt=3, then find the greatest value of |z_1+z_2+z_3|dot

If |z_1-1|lt=1,|z_2-2|lt=2,|z_(3)-3|lt=3, then find the greatest value of |z_1+z_2+z_3|dot

If |z_1-1|lt=1,|z_2-2|lt=2,|z_(3)-3|lt=3, then find the greatest value of |z_1+z_2+z_3|dot

If |z_1-1|lt=1,|z_2-2|lt=2,|z_(3)-3|lt=3, then find the greatest value of |z_1+z_2+z_3|dot

If |z+4|lt=3 then find the greatest and least values of |z+1|dot

If |z_1-1|lt=,|z_2-2|lt=2,|z_(33)|lt=3, then find the greatest value of |z_1+z_2+z_3|dot

If pi lt theta lt 2pi and z=1+costheta+isintheta , then find the value of |z|.

Let z=x+iy and w=u+iv be two complex numbers, such that |z|=|w|=1 and z^(2)+w^(2)=1. Then, the number of ordered pairs (z, w) is equal to (where, x, y, u, v in R and i^(2)=-1 )