Home
Class 12
MATHS
If alpha,beta,gamma,delta are four compl...

If `alpha,beta,gamma,delta` are four complex numbers such that `gamma/delta` is real and `alpha delta - beta gamma !=0` then z = `(alpha + beta t)/(gamma+ deltat)` represents a

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma,delta are four complex numbers such that gamma/delta is real and alpha delta - beta gamma !=0 then z = (alpha + beta t)/(gamma+ deltat) where t is a rational number, then it represents:

If alpha,beta,gamma,delta are four complex numbers such that gamma/delta is real and alpha delta - beta gamma !=0 then z = (alpha + beta t)/(gamma+ deltat) where t is a rational number, then it represents:

If cos (alpha + beta) sin (gamma + delta) = cos (alpha - beta) sin (gamma - delta) then:

Let alpha,beta,gamma,delta be four real numbers such that alpha^(2)+gamma^(2)=9 and beta^(2)+delta^(2)=1 ,then the maximum value of 3(alpha beta-gamma delta)+4(alpha delta+beta gamma) is

If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta) then the value of cot alpha cot beta cot gamma, is

If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta), prove that cot alpha cot beta cot gamma=cot delta

the points (alpha,beta) , (gamma , delta) ,(alpha , delta) , (gamma , beta) are different real numbers are:

If cos(alpha+beta)sin(gamma +delta) = cos(alpha-beta)sin(gamma-delta) , then the value of cotalpha*cotbeta.cotgamma is :

If cos(alpha+beta)*sin(gamma+delta)=cos(alpha-beta)*sin(gamma-delta) prove that cot alpha cot beta cot gamma=cot delta