Home
Class 12
MATHS
" 6.Prove that "|[1,x,x^(3)],[1,y,y^(3)]...

" 6.Prove that "|[1,x,x^(3)],[1,y,y^(3)],[1,z,z^(3)]|=(x-y)(y-z)(z-x)(x+y+z)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |(1,x,x^3),(1,y,y^3),(1,z,z^3)|=(x+y+z)(x-y)(y-z)(z-y) .

Prove that abs[[1,x,x^2],[1,y,y^2],[1,z,z^2]]=(x-y)(y-z)(z-x)

Prove that |(1,x,x^2),(1,y,y^2),(1,z,z^2)|=(x-y)(y-z)(z-x)

Prove that |(1,x,x^2),(1,y,y^2),(1,z,z^2)| = (x-y)(y-z)(z-x)

Show that |{:(1,x, x ^(3)),(1,y,y ^(3)),(1,z,z^(3)):}| = (x-y) (y-z) (z-x) (x + y + z)

Prove that : Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-x)

Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(z-x)(x+y+z)

Without expanding as far as possible, prove that |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}| = (x-y)(y-z)(z-x)(x+y+z) .

Without expanding as far as possible, prove that |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}| = (x-y)(y-z)(z-x)(x+y+z) .

Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(x+y+z)