Home
Class 11
MATHS
lim(x rarr1)(sqrt(x)+3)...

lim_(x rarr1)(sqrt(x)+3)

Promotional Banner

Similar Questions

Explore conceptually related problems

a=lim_(x rarr0)(ln(cos2x))/(3x^(2)),b=lim_(x rarr0)(sin^(2)2x)/(x(1-e^(x))),c=lim_(x rarr1)(sqrt(x)-x)/(ln x)

If lim_(x rarr1)(a sqrt(x+3)-b)/(x-1)=(1)/(4), then

lim_(x rarr1)((sqrt(3+x)-sqrt(5-x))/(x^(2)-1))

lim_(x rarr1)((sqrt(3+x)-sqrt(5-x))/(x^(2)-1))

lim_(x rarr1)(sqrt(7x+2)-3)/(sqrt(5x-1)-sqrt(6x-2))

The value of lim_(x rarr1)(3sqrt(x)-1)/(x-1) is

lim_(x rarr 1) ((sqrt(x) - 1) (2x - 3))/(2x^(2) + x - 3) is :

lim_(x rarr1)(13sqrt(x)-7sqrt(x))/(5sqrt(x)-3sqrt(x))

lim_(x rarr1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

lim_(x rarr1)(sqrt(x^(2)+8)-sqrt(10-x^(2)))/(sqrt(x^(2)+3)-sqrt(5-x^(2)))=