Home
Class 12
MATHS
(3^(2x-8))/(225)=(5^(3))/(5^(x))," then ...

(3^(2x-8))/(225)=(5^(3))/(5^(x))," then "x=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If (3^(2x-6))/(225) = (5^(2))/(5^(x)) . Then the value of 'x' will be

(2x)/(5-3x)=(5+3x)/(8x)

Find the value of x in each of the following . (i) root5(5x + 2) = 2 (ii) root3(3x - 2) =4 (iii) ((3)/(4))^(3)((4)/(3))^(-7)= ((3)/(4))^(2x) (iv) 5^(x-3) xx 3^(2x -8) = 225 (v) (3^(3x) . 3^(2x))/(3^(x)) = root4(3^(20))

x=(2*5)/((2!)3)+(2*5*7)/((3!)3^(2))+(2*5*7*9)/((4!)3^(3))+..... then x^(2)+8x+8=

If 8(2x-5)-6(3x-7)=10 , then x=?

If 8(2x-5)-6(3x-7)=1 then x= ?

Check whether the following are quadratic equations : (1) (x-3)^(2)=x(2x-5) (2) (2x-3)(8x+1) = (4x+5)(4x-5) (3) (5x+3)(x-2)=(4x+3)(2x-1) (4) (2x+5)^(3)=8(x-1)^(3) (5) x^(2)+7x-8=x(x+5) (6) x^(3)+9x^(2)-7x+2=(x+3)^(3)

If |(2x,-3),(5,x)| =|(4,3),(5,8)| , then positive value of x is