Home
Class 12
MATHS
The number of real solutions of tan^(-1)...

The number of real solutions of `tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi/2` is a.`z ero` b. one`` c. two d. infinite

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real solutions of tan^(-1)sqrt(x^(2)+x)+ cosec^(-1)sqrt(1-x^(2)-x)=pi/2 is

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi/2 is a. zero b . one c . two d . infinite

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2) is a.zero b.one c.two d.infinite

The number of solution of tan^-1(sqrt(x(x-1)))+sin^-1(sqrt(x^2+x+1))=pi/2 are

Find the real solutions of tan^(-1)(sqrt(x(x+1)))+sin^(-1)(sqrt(x^(2)+x+1))=pi/2

The number of real solution of cot^(-1)sqrt(x(x+3))+sin^(-1)sqrt(x^(2)+3x+1)=(pi)/(2) is /are

The number of real solution of cot^(-1)sqrt(x(x+3))+sin^(-1)sqrt(x^(2)+3x+1)=(pi)/(2) is /are

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi//2 a)0 b)1 c)2 d) oo

The number of real solutions of tan^(-1)sqrt(x^(2)-3x+2)+cos^(-1)sqrt(4x-x^(2)-3)=pi is