Home
Class 11
MATHS
" The value of "sum(k=2)^(oo){lim(n rarr...

" The value of "sum_(k=2)^(oo){lim_(n rarr oo)sum_(r=1)^(n)(sqrt(n))/(sqrt(r)(k sqrt(n)-sqrt(r))^(2))}" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(k=2)^(oo){Lt_(n rarr oo)sum_(r=1)^(n)((sqrt(n))/(sqrt(r)(k sqrt(n)-sqrt(r))^(2))}]}

lim_(n->oo)sum_(r=1)^n(sqrt(n))/(sqrt(r)(3sqrt(r)+4sqrt(n))^2)

The value of ("lim")_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to

The value of lim_(n rarr oo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^(2)) is equal to (1)/(35) (b) (1)/(4)(c)(1)/(10) (d) (1)/(5)

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

lim_ (n rarr oo) sum_ (n = 1) ^ (n) (sqrt (n)) / (sqrt (r) (3sqrt (r) + 4sqrt (n)) ^ (2))

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0