Home
Class 11
MATHS
int sin mx cos nxdx,m!=n...

int sin mx cos nxdx,m!=n

Promotional Banner

Similar Questions

Explore conceptually related problems

int cos mx cos nxdx,m!=n

Integrate: int cos mx cos nxdx,m!=n

If m!=n where m,n are positive integers,then int sin mx sin nxdx=

Evaluate the following integrals: int sin mx sin nx dx

Evaluate the following inegrals int sin mx sin nx dx

Evalute the following integrals int cos mx cos nx dx

Prove : int sin mx sin n x dx[ m^(2) != n^(2)] , = 1/2 [ (sin(m-n)x)/(m-n) - (sin (m+n)x)/(m+n) ] + c

If m and n are integers and m ne n , then show that, int_(0)^(pi) sin mx cos nx dx={{:((2m)/(m^(2)-n^(2)),"when"(m-n)" is odd"),(0,"when"(m-n)"is even"):}

Reduction Formula for int sin^(m)x cos^(n)xdx