Home
Class 12
MATHS
y=sec^(-1)((1)/(2x^(2)-1))...

y=sec^(-1)((1)/(2x^(2)-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))at x = (1)/(2) is

The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=1 , is

The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=1 , is

The derivative of sec^(-1)(-1/(2x^(2) -1)) with respect to sqrt(1-x^(2)) " at " x = 1/2 is ……. .

The derivatives of "sec"^(-1)(1)/(2x^(2)-1) with respect to sqrt(1-x^(2)) at x=(1)/(2) , is -

Find the (dy)/(dx) of y=sec^(-1)(1/(1-2x^2))

If y=sec^(-1)((x^(2)+1)/(x^(2)-1)) , then find (dy)/(dx) . Here f^(-1)(x) expression is of the form (x^(2)+a^(2))/(x^(2)-a^(2)) , so we substitute x=tan theta and then use suitable trigonometrical formula to write it in simplest form and then differentiate

If y=sin^(-1)((2x)/(1+x^(2)))+sec^(-1)((1+x^(2))/(1-x^(2))),0

If y= sin^(-1)((2x)/(x^(2)+1)) +sec^(-1)((1+x^(2))/(1-x^(2))) , prove that (dy)/(dx)=(4)/(1+x^(2)) .

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)