Home
Class 12
MATHS
" (5.) "(1)/(sqrt((x-a)(x-b)))...

" (5.) "(1)/(sqrt((x-a)(x-b)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x(sqrt(25)^(x+(1)/(4))*sqrt(5.5)^(-1))/(5sqrt(5)^(-x))=p, then find the value of p.

If y=sqrt((a-x)(x-b))-(a-b)tan^(-1)sqrt((a-x)/(x-b)), then find(dy)/(dx)

If y=sqrt((a-x)(x-b))- (a-b)tan^(-1)sqrt((a-x)/(x-b)) then (dy)/(dx) is equals to

If y= sqrt((a-x)(x-b))-(a-b)tan^(-1)sqrt((a-x)/(x-b))(a gtb) then (dy)/(dx) =

Evaluate: (i) int(5x+3)sqrt(2x-1)dx (ii) int(x)/(sqrt(x+a)-sqrt(x+b))dx

If y=sqrt((a-x)(x-b))-(a-b)tan^(-1)((sqrt(a-x))/(sqrt(x-b))) then (dy)/(dx)=

A: int (1)/(3+2 cos x)dx=(2)/(sqrt(5))"Tan"^(-1)((1)/(sqrt(5))"tan" (x)/(2))+c R: If a gt b then int (dx)/(a+b cosx)=(2)/(sqrt(a^(2)-b^(2)))Tan^(-1)[(sqrt(a-b))/(a+b)"tan"(x)/(2)]+c

The value of integral int e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))dx is equal to e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(3))))+ce^(x)((1)/(sqrt(1+x^(2)))-(1)/(sqrt((1+x^(2))^(5))))+ce^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))+c none of these

Differentiate wrt x (sqrt(x)+(1)/(sqrt(x)))^(5)