Home
Class 11
MATHS
[" A parallelogram is constructed on "3v...

[" A parallelogram is constructed on "3vec a+vec b" and "vec a-4bar(b)" where "],[|vec a|=6,|vec b|=8" and "vec a,bar(b)" are anti-parallel,then the length of the "],[" longer diagonal is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

A parallelogram is constructed on 3 vec a+ vec ba n d vec a-4 vec b ,w h e r e| vec a|=6a n d| vec b|=8,a n d vec aa n d vec b are anti-parallel. Then the length of the longer diagonal is 40 b. 64 c. 32 d. 48

A parallelogram is constructed on 3 vec a+ vec ba n d vec a-4 vec b ,w h e r e| vec a|=6a n d| vec b|=8,a n d vec aa n d vec b are anti-parallel. Then the length of the longer diagonal is 40 b. 64 c. 32 d. 48

A parallelogram is constructed on 3 vec a+ vec ba n d vec a-4 vec b ,w h e r e| vec a|=6a n d| vec b|=8,a n d vec aa n d vec b are anti-parallel. Then the length of the longer diagonal is 40 b. 64 c. 32 d. 48

A parallelogram is constructed on 3 vec a+ vec ba n d vec a-4 vec b ,w h e r e| vec a|=6a n d| vec b|=8,a n d vec aa n d vec b are anti-parallel. Then the length of the longer diagonal is a . 40 b. 64 c. 32 d. 48

A parallelogram is constructed on 3 vec a+ vec ba n d vec a-4 vec b ,w h e r e| vec a|=6a n d| vec b|=8,a n d vec aa n d vec b are anti-parallel. Then the length of the longer diagonal is 40 b. 64 c. 32 d. 48

A parallelogram is constructed on 3 vec a+ vec ba n d vec a-4 vec b ,w h e r e| vec a|=6a n d| vec b|=8,a n d vec aa n d vec b are anti-parallel. Then the length of the longer diagonal is 40 b. 64 c. 32 d. 48

a parallelogramis constructed on the vectorsif vec a=3vec p+vec q and vec b=vec p-3vec q angle between the vec p&vec q is 60^(@),a,b are side of the parallogram then length of the diagonals: |vec p|=2&|vec q|=2

Let vec a and vec b two vectors are such that |vec a|=2sqrt(2) and |vec b|=3 and contain angle 45^(@) . A parallelogram is constructed with vec a-3vec b and 5vec a+2vec b as adjacent sides. Then the length of the larger diagonal is

Find |vec a| and |vec b|, if :(vec a+vec b)vec a-vec b=8 and |vec a|=8|vec b|