Home
Class 12
MATHS
" 6.(i) "sin^(-1)((2x)/(1+x^(2)))...

" 6.(i) "sin^(-1)((2x)/(1+x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin^(-1)((2x)/(1+x^(2))), then Statement I The value of f(2)=sin^(-1)((4)/(5)) . Statement II f(x)=sin^(-1)((2x)/(1+x^(2)))=-2, for xlt1

If f(x)=sin^(-1)((2x)/(1+x^(2))), then Statement I The value of f(2)=sin^(-1)((4)/(5)) . Statement II f(x)=sin^(-1)((2x)/(1+x^(2)))=-2, for xlt1

If f(x)=sin^(-1)((2x)/(1+x^(2))), then Statement I The value of f(2)=sin^(-1)((4)/(5)) . Statement II f(x)=sin^(-1)((2x)/(1+x^(2)))=-2, for xlt1

If f(x)=sin^(-1)((2x)/(1+x^(2))), then Statement I The value of f(2)=sin^(-1)((4)/(5)) . Statement II f(x)=sin^(-1)((2x)/(1+x^(2)))=-2, for xlt1

If I_(1)= int Sin^(-1)((2x)/(1+x^(2)))dx,I_(2)= int Cos^(-1)((1-x^(2))/(1+x^(2)))dx, I_(3)= intTan^(-1)((2x)/(1-x^(2)))dx then the value of I_(1)+I_(2)-I_(3)=

If I_(1) int sin^(-1) ((2x)/(1 +x^(2)) ) dx , I_(2) = int cos^(-1) ((1-x^(2))/(1 +x^(2)) ) dx , I_(3) = int tan^(-1) ((2x)/(1 - x^(2)) ) dx , then I_(1) + I_(2) - I_(3) =

Statement I Derivative of sin^(-1)((2x)/(1+x^(2)))w.r.t. cos^(-1)((1-x^(2))/(1+x^(2))) is 1 for 0ltxlt1. sin^(-1)((2x)/(1+x^(2)))=cos^(-1)((1-x^(2))/(1+x^(2))) for -1lexle1 (a)Both statement I and Statement II are correct and Statement II is the correct explanation of Statement I(b)Statement I is correct but Statement II is incorrect

I=int sin^(-1)(2x)dx

Find the derivative of sin^(-1)((2x^3)/(1+x^6)) .