Home
Class 12
MATHS
The equation x^3-3/4x=-(sqrt(3))/8 is s...

The equation `x^3-3/4x=-(sqrt(3))/8` is satisfied by `x=cos((5pi)/(18))` (b) `x=cos((7pi)/(18))` `x=cos((23pi)/(18))` (d) `x=cos((17pi)/(18))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation x^(3)-(3)/(4)x=-(sqrt(3))/(8) is satisfied by x=cos((5 pi)/(18))( b) x=cos((7 pi)/(18))x=cos((23 pi)/(18))( d) x=cos((17 pi)/(18))

cos((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt(2) sin x

sin ((5 pi) / (18)) - cos ((4 pi) / (9)) = sqrt (3) sin ((pi) / (9))

The value of cos ec((pi)/(18))-sqrt(3)sec((pi)/(18)) is a

cos^3(x-((2pi)/3))+cos^3x+cos^3(x+((2pi)/3)))=3/4 cos3x

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x