Home
Class 10
MATHS
" (vi) "10x-(1)/(x)=3,x!=0...

" (vi) "10x-(1)/(x)=3,x!=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The two roots of a quadratic equation are given as x =5/3 and x=(-3)/10. The equation can be writing as: A) (10x – 3)(3x - 5) = 0 B) (10x+3)(3x - 5) = 0 C) (10x +3)(3x + 5) = 0 D) (10x - 3)(3x + 5) = 0

(i) (x ^ (3) + 2x ^ (2) + 3x) -: 2x (ii) (10x-25) - :( 2x-5) (iii) (x (x + 1) (x + 2 ) (x + 3)) - :( x (x + 1))

Solve the following Q.E.: (i) 3x^(2)-4x+(20)/(3)=0 (ii) 27x^(2)-10x+1=0

10x^(2)-20x+1=0

If alpha,beta are the roots of the equation 2x^(2)+4x-5=0, the equation whose roots are the reciprocals of 2 alpha-3 and 2 beta-3 is - (i) x^(2)+10x-11=0 (ii) 11x^(2)+10x+1=0 (ii) x^(2)+10x+11=0 (iv) 11x^(2)-10x+1=0

(20)/((x-3)(x-4))+(10)/(x-4)+1>0

3 ^ (2x + 1) + 10 (3 ^ (x)) + 3 = 0

If f(x) {:( (1-cos(10x))/(x^(2)) ", if " x lt 0 ),(= a ", if " x = 0 ),(=(sqrt(x))/(sqrt(625+sqrt(x))-25)", if " x gt 0 ):} is continuous at x = 0 , then a =

Fill in the blanks : If f(x) = |(0,x-1,x-2),(x+1,0,x-3),(x+2,x+3,0)| , then the value of f(0) is equal to ………… .

Solve the inequality if f(x)=((x-2)^(10)(x+1)^(3)(x-((1)/(2)))^(5)(x+8)^(2))/(x^(24)(x-3)^(3)(x+2)^(5))is>0 or <0