Home
Class 8
MATHS
3sqrt(7)n^(2)+4n-sqrt(7)=0...

3sqrt(7)n^(2)+4n-sqrt(7)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve each of the following quadratic equations: 3sqrt(7)x^(2)+4x-sqrt(7)=0

If 0ltxltpi and cosx + sinx =1/2 , then tanx is (1) (4-sqrt(7))/3 (2) -(4+sqrt(7))/3 ( 3) (1+sqrt(7))/4 (4) (1-sqrt(7))/4

Complete the following activity to solve the quadratic equation sqrt(3) x^(2) +4x- 7 sqrt(3) = 0 by factorisation method : sqrt(3) x^(2) +4x- 7 sqrt(3) = 0 :. sqrt(3) x^(2) + square - 3x - 7 sqrt(3) = 0 :. x( sqrt(3) x + ) - sqrt(3) ( sqrt(3) x + 7) = 0 :. (" ") (x-sqrt(3))= 0 :. sqrt(3) x + 7 = 0 or square = 0 :. x = ( -7)/( sqrt(3)) or x = square :. (-7)/(sqrt(3)) and sqrt(3) are the roots of the equation.

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

Find the sum of the following geometric series: sqrt(7),sqrt(21),3sqrt(7),quad rarr n terms.

Find the sum of the following geometric series: sqrt(7),sqrt(21),3sqrt(7),\ to\ n terms.

Find the sum to indicated number of terms in each of the geometric progressions in Questions 7 to 10 : sqrt(7),sqrt(21),3sqrt(7),..."n terms."

The foci of the hyperbola 3(y-1)^2-4(x-2)^2=12 are (0,sqrt(7)) b. (-2,1-sqrt(7)) c. 2,1-sqrt(7) d. (0)-sqrt(7)

(sqrt(7)+sqrt(3))/(sqrt(7)-sqrt(3))-(sqrt(7)-sqrt(3))/(sqrt(7)+sqrt(3))