Home
Class 12
MATHS
[" The equation "x^(3)-(3)/(4)x=-(sqrt(3...

[" The equation "x^(3)-(3)/(4)x=-(sqrt(3))/(8)],[" is satisfied by "],[qquad [x=cos((5 pi)/(18))],[x=cos((7 pi)/(18))],[x=cos((23 pi)/(18))],[x=sin((7 pi)/(9))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation x^(3)-(3)/(4)x=-(sqrt(3))/(8) is satisfied by x=cos((5 pi)/(18))( b) x=cos((7 pi)/(18))x=cos((23 pi)/(18))( d) x=cos((17 pi)/(18))

The equation x^3=3/4x=-(sqrt(3))/8 is satisfied by x=cos((5pi)/(18)) (b) x=cos((7pi)/(18)) x=cos((23pi)/(18)) (d) x=cos((17pi)/(18))

The equation x^3=3/4x=-(sqrt(3))/8 is satisfied by x=cos((5pi)/(18)) (b) x=cos((7pi)/(18)) x=cos((23pi)/(18)) (d) x=cos((17pi)/(18))

sin ((5 pi) / (18)) - cos ((4 pi) / (9)) = sqrt (3) sin ((pi) / (9))

cos((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt(2) sin x

cos((3pi)/4+x)-cos((3pi)/4-x)=

prove that : sin((5pi)/18)-cos((4pi)/9)=sqrt(3)sin(pi/9)

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=sqrt(2)sin x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x