Home
Class 12
MATHS
f(x)=int(0)^(x)|log(2)(log(3)(log(4)(cos...

f(x)=int_(0)^(x)|log_(2)(log_(3)(log_(4)(cos t+a)))|dt" If "f(x)" is increasing for all real values of "x" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(0)^(x)|log_(2)(log_(3)(log_(4)(cos t+a)))|dt be increasing for all real value of x, then the range of 'a'

f(x) be a differentiable function such that f'(x)=(1)/(log_(3)(log_((1)/(4))(cos x+a)))* If f(x) is increasing for all values of x, then

Let f(x) be a function such that f(x)=log_((1)/(3))(log_(3)(sin x+a)). If f(x) is decreasing for all real values of x, then

Let f(x) be a function such that f'(x)=log_(1//3)[log_(3)(sinx+a)] . If f(x) is decreasing for all real values of x , then

Let f(x) be a function such that f'(x)=log_(1/3) [log_(3)(sin x+a)] . If f(x) is decreasing for all real values of x then a gt k , find k.

Let f(x) be a function such that f'(x) = log_(1//3) [log_(3) (sin x + a)] .If f(x) is decreasing for all real values of x, then a) a in (1, 4) b) a in (4, oo) c) a in (2, 3) d) a in (2, oo)

Let f(x) be a function such that f(x)=log_((1)/(2))[log_(3)(sin x+a]. If f(x) is decreasing for all real values of x, then a in(1,4)( b) a in(4,oo)a in(2,3)(d)a in(2,oo)

Leg f(x)=log(log_(1/3)(log_((1)/(3))(log_(7)(sin x+a)))) be defined for every real value of x, then the possible value of a is 3 (b) 4(c)5(d)6

If f(x)=int_(0)^(x)log_(0.5)((2t-8)/(t-2))dt , then the interval in which f(x) is increasing is

If f(x)=int_(0)^(x)log_(0.5)((2t-8)/(t-2))dt , then the interval in which f(x) is increasing is