Home
Class 12
MATHS
tan^(4)x+cot^(-1)x=?=(pi)/(2)...

tan^(4)x+cot^(-1)x=?=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)4+cot^(-1)x=(pi)/(2), then value of x is

Find x, if tan^(-1)4+cot^(-1)x=(pi)/(2) .

tan^(-1) x +cot^(-1)x =(pi)/(2) holds, when

prove that tan^(-1)x+cot^(-1)x=pi/2

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

If tan^(-1)x+tan^(-1)y=(4 pi)/(5), find cot^(-1)x+cot^(-1)y

tan^(-1)x +tan^(-1)y = (3pi)/4 Then cot^(-1) x + cot^(-1) y is :

if tan^(-1)x+ tan^(-1)y= (4 pi)/(5) then cot^(-1)x+ cot^(-1)y is equal to

cot ^(-1)""x+cot^(-1)""2x=(3pi)/(4)