Home
Class 11
MATHS
" If "tanh^(-1)(x)=a log(e)((1+x)/(1-x))...

" If "tanh^(-1)(x)=a log_(e)((1+x)/(1-x)),|x|<1," then a "=

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan h^(-1)(x)=a log_(e)((1+x)/(1-x)),|x|<1 then a=

If x=tanh^(-1)(y) then log_(e)((1+y)/(1-y))

"Tanh"^(-1) x = a log ((1+x)/(1-x)), |x| lt 1 rArr a =

If x=tanh^(-1)(y) , then log_(e )((1+y)/(1-y))=

tanh^(-1)x=alog|(1+x)/(1-x)|, |x| lt 1 rArr a =

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If x= "Tanh"^(-1) y , then "log"_e ((1+y)/(1-y)) =