Home
Class 11
MATHS
(1)/(log(a)ab)+(1)/(log(b)alr)+(1)/(log(...

(1)/(log_(a)ab)+(1)/(log_(b)alr)+(1)/(log_(c)abc)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1)/(log_(a)abc)+(1)/(log_(b)abc)+(1)/(log_(c)abc)

Show that (1)/(log_(a)abc)+(1)/(log_(b)abc) + (1)/(log_(c) abc) = 1 .

If a,b,c are positive real numbers,then (1)/(log_(a)bc+1)+(1)/(log_(b)ca+1)+(1)/(log_(c)ab+1)=

(1)/(log_(a)(ab)+(1)/(log_(b)(ab)=1))

(1)/(log_(bc)abc)+(1)/(log_(ac)abc)+(1)/(log_(ab)abc) is equal to

Show that (1)/(log_(a)bc+1)+(1)/(log_(b)ca+1)+(1)/(log_(c )ab+1)=1

Simplify: (1)/(1+log_(a)bc)+(1)/(1+log_(b)ca)+(1)/(1+log_(c)ab)

If (1)/(log_(a)x) + (1)/(log_(b)x) = (2)/(log_(c)x) , prove that : c^(2) = ab .

(1)/(log_(a)(ab))+(1)/(log_(b)(ab))=1