Home
Class 11
MATHS
" Prove that ":sin^(2)((pi)/(8)+(A)/(2))...

" Prove that ":sin^(2)((pi)/(8)+(A)/(2))-sin^(2)((pi)/(8)-(A)/(2))=(1)/(sqrt(2))sin A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, sin^(2)((pi)/(8)+(A)/(2))-sin^(2)((pi)/(8)-(A)/(2))=(1)/(sqrt(2))sinA

Prove that sin ^(2) ((pi)/(8)+(A)/(2)) - sin ^(2) ((pi)/(8) - (A)/(2))=(1)/(sqrt2) sin A .

sin^(2)((A)/(2)+(pi)/(8))-sin^(2)((A)/(2)-(pi)/(8))=(1)/(sqrt(2))sin A

sin^(2)((pi)/(8)+(A)/(2))-sin^(2)((pi)/(8)-(A)/(2)) is equal to

4.Prove that sin^(2)((pi)/(8))+sin^(2)((3 pi)/(8))=1

Evaluate sin^(2)((pi)/(8)+(theta)/(2))-sin^(2)((pi)/(8)-(theta)/(2))

Prove that: sin^(2)(pi/8+A/2)-sin^(2)(pi/8-A/2)=1/sqrt(2)sinA

Prove that sin ^(2) ((pi)/(8) + (theta)/(2)) - sin ^(2) ((pi)/(8) - (theta)/(2)) = sin ""(pi)/(4) sin theta.

Prove that, sin^(2) (pi/8 + theta/2) - sin^(2)(pi/8 - theta/2) = 1/sqrt2 sin theta